2/3x^2-15=23

Simple and best practice solution for 2/3x^2-15=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x^2-15=23 equation:



2/3x^2-15=23
We move all terms to the left:
2/3x^2-15-(23)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x^2-38=0
We multiply all the terms by the denominator
-38*3x^2+2=0
Wy multiply elements
-114x^2+2=0
a = -114; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-114)·2
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{57}}{2*-114}=\frac{0-4\sqrt{57}}{-228} =-\frac{4\sqrt{57}}{-228} =-\frac{\sqrt{57}}{-57} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{57}}{2*-114}=\frac{0+4\sqrt{57}}{-228} =\frac{4\sqrt{57}}{-228} =\frac{\sqrt{57}}{-57} $

See similar equations:

| Y=1/3+2y=-1/2+2 | | 3x-45=x+25 | | 3-6r+1=-17 | | x-15=2x-84 | | 1/2x+3-3=8-3 | | 7h-4=3h+44 | | -135-x=6x+40 | | (x*x)+6x-40=0 | | 1/2y-3=2/3y+4 | | 9=6+2.50h | | x+x+10+x+20=720 | | 3(1/2b-2)=-1/2(4-b) | | 3x-8+8=1+8 | | 3x+48=84 | | 5x-4/6+3x+10/2=8x+ | | 5x+25+x+5=180 | | 1/2x+15+(2x-50)=90 | | -6=3(x-7) | | 100=50+2x | | (3x/2)-1=8 | | -1x=1x-4 | | 5(2+3y)=+y | | 2x^2-36x-255=0 | | 2x+0=8x+(-3) | | 3x-72+x+5+x-3=180 | | (4x+30)=94 | | p÷2+7p÷3=153 | | 3(4y-7)=7 | | 48=4(-4x+4) | | 2x-77=49-5x | | -9x-24=-11x+34 | | -45+x=105-5x |

Equations solver categories